PAH1-encoded phosphatidate phosphatase plays a role in the growth phase- and inositol-mediated regulation of lipid synthesis in Saccharomyces cerevisiae.

نویسندگان

  • Florencia Pascual
  • Aníbal Soto-Cardalda
  • George M Carman
چکیده

In the yeast Saccharomyces cerevisiae, the synthesis of phospholipids in the exponential phase of growth occurs at the expense of the storage lipid triacylglycerol. As exponential phase cells progress into the stationary phase, the synthesis of triacylglycerol occurs at the expense of phospholipids. Early work indicates a role of the phosphatidate phosphatase (PAP) in this metabolism; the enzyme produces the diacylglycerol needed for the synthesis of triacylglycerol and simultaneously controls the level of phosphatidate for the synthesis of phospholipids. Four genes (APP1, DPP1, LPP1, and PAH1) encode PAP activity in yeast, and it has been unclear which gene is responsible for the synthesis of triacylglycerol throughout growth. An analysis of lipid synthesis and composition, as well as PAP activity in various PAP mutant strains, showed the essential role of PAH1 in triacylglycerol synthesis throughout growth. Pah1p is a phosphorylated enzyme whose in vivo function is dependent on its dephosphorylation by the Nem1p-Spo7p protein phosphatase complex. nem1Δ mutant cells exhibited defects in triacylglycerol synthesis and lipid metabolism that mirrored those imparted by the pah1Δ mutation, substantiating the importance of Pah1p dephosphorylation throughout growth. An analysis of cells bearing PPAH1-lacZ and PPAH1-DPP1 reporter genes showed that PAH1 expression was induced throughout growth and that the induction in the stationary phase was stimulated by inositol supplementation. A mutant analysis indicated that the Ino2p/Ino4p/Opi1p regulatory circuit and transcription factors Gis1p and Rph1p mediated this regulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphatidate phosphatase plays role in zinc-mediated regulation of phospholipid synthesis in yeast.

In the yeast Saccharomyces cerevisiae, the synthesis of phospholipids is coordinately regulated by mechanisms that control the homeostasis of the essential mineral zinc (Carman, G.M., and Han, G. S. (2007) Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion. Biochim. Biophys. Acta 1771, 322-330; Eide, D. J. (2009) Homeostatic and adaptive responses to zinc deficie...

متن کامل

Transcription Factor Reb1p Regulates DGK1-encoded Diacylglycerol Kinase and Lipid Metabolism in Saccharomyces cerevisiae*

In the yeast Saccharomyces cerevisiae, the DGK1-encoded diacylglycerol kinase catalyzes the CTP-dependent phosphorylation of diacylglycerol to form phosphatidate. This enzyme, in conjunction with PAH1-encoded phosphatidate phosphatase, controls the levels of phosphatidate and diacylglycerol for phospholipid synthesis, membrane growth, and lipid droplet formation. In this work, we showed that a ...

متن کامل

Phosphatidate Phosphatase Activity Plays a Key Role in Protection Against Fatty Acid-induced Toxicity in Yeast*

The PAH1-encoded phosphatidate (PA) phosphatase in Saccharomyces cerevisiae is a pivotal enzyme that produces diacylglycerol for the synthesis of triacylglycerol (TAG), and simultaneously controls the level of PA used for phospholipid synthesis. Quantitative lipid analysis showed that the pah1 mutation caused a reduction in TAG mass and an elevation in the mass of phospholipids and free fatty ...

متن کامل

The Saccharomyces cerevisiae actin patch protein App1p is a phosphatidate phosphatase enzyme.

BACKGROUND Phosphatidate phosphatase (PAP) plays diverse roles in lipid metabolism and cell signaling. RESULTS A novel yeast PAP is identified as the actin patch protein encoded by APP1. CONCLUSION APP1 and other known genes (PAH1, DPP1, LPP1) are responsible for all detectable PAP activity in yeast. SIGNIFICANCE Identification of App1p as a PAP enzyme will facilitate the understanding of...

متن کامل

Phosphorylation of lipid metabolic enzymes by yeast protein kinase C requires phosphatidylserine and diacylglycerol.

Protein kinase C in Saccharomyces cerevisiae, i.e., Pkc1, is an enzyme that plays an important role in signal transduction and the regulation of lipid metabolic enzymes. Pkc1 is structurally similar to its counterparts in higher eukaryotes, but its requirement of phosphatidylserine (PS) and diacylglycerol (DAG) for catalytic activity has been unclear. In this work, we examined the role of these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 288 50  شماره 

صفحات  -

تاریخ انتشار 2013